首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22513篇
  免费   4447篇
  国内免费   2772篇
测绘学   324篇
大气科学   150篇
地球物理   4931篇
地质学   21401篇
海洋学   1621篇
天文学   243篇
综合类   404篇
自然地理   658篇
  2023年   230篇
  2022年   525篇
  2021年   648篇
  2020年   848篇
  2019年   814篇
  2018年   1430篇
  2017年   1876篇
  2016年   1610篇
  2015年   1443篇
  2014年   2105篇
  2013年   2240篇
  2012年   2034篇
  2011年   1807篇
  2010年   1690篇
  2009年   1586篇
  2008年   1137篇
  2007年   1610篇
  2006年   1446篇
  2005年   712篇
  2004年   394篇
  2003年   476篇
  2002年   398篇
  2001年   368篇
  2000年   370篇
  1999年   451篇
  1998年   171篇
  1997年   104篇
  1996年   107篇
  1995年   70篇
  1994年   75篇
  1993年   68篇
  1992年   54篇
  1991年   55篇
  1990年   68篇
  1989年   47篇
  1988年   42篇
  1987年   57篇
  1986年   51篇
  1985年   57篇
  1984年   62篇
  1983年   65篇
  1982年   38篇
  1981年   31篇
  1980年   29篇
  1979年   35篇
  1978年   19篇
  1977年   23篇
  1975年   21篇
  1974年   23篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
The Transantarctic Mountains (TAM) are one of Earth's great mountain belts and are a fundamental physiographic feature of Antarctica. They are continental-scale, traverse a wide range of latitudes, have high relief, contain a significant proportion of exposed rock on the continent, and represent a major arc of environmental and geological transition. Although the modern physiography is largely of Cenozoic origin, this major feature has persisted for hundreds of millions of years since the Neoproterozoic to the modern. Its mere existence as the planet's longest intraplate mountain belt at the transition between a thick stable craton in East Antarctica and a large extensional province in West Antarctica is a continuing enigma. The early and more cryptic tectonic evolution of the TAM includes Mesoarchean and Paleoproterozoic crust formation as part of the Columbia supercontinent, followed by Neoproterozoic rift separation from Laurentia during breakup of Rodinia. Development of an Andean-style Gondwana convergent margin resulted in a long-lived Ross orogenic cycle from the late Neoproterozoic to the early Paleozoic, succeeded by crustal stabilization and widespread denudation during early Gondwana time, and intra-cratonic and foreland-basin sedimentation during late Paleozoic and early Mesozoic development of Pangea. Voluminous mafic volcanism, sill emplacement, and layered igneous intrusion are a primary signature of hotspot-influenced Jurassic extension during Gondwana breakup. The most recent phase of TAM evolution involved tectonic uplift and exhumation related to Cenozoic extension at the inboard edge of the West Antarctic Rift System, accompanied by Neogene to modern glaciation and volcanism related to the McMurdo alkaline volcanic province. Despite the remote location and relative inaccessibility of the TAM, its underlying varied and diachronous geology provides important clues for reconstructing past supercontinents and influences the modern flow patterns of both ice and atmospheric circulation, signifying that the TAM have both continental and global importance through time.  相似文献   
22.
Wan  Bo  Wu  Fuyuan  Chen  Ling  Zhao  Liang  Liang  Xiaofeng  Xiao  Wenjiao  Zhu  Rixiang 《中国科学:地球科学(英文版)》2019,62(12):2005-2016
Numerous continents have rifted and drifted away from Gondwana to repeatedly open ocean basins over the past-500 millionyears.These Gondwana-derived continents drifted towards and collided with components of the Eurasian continent to successively close the preexisting oceans between the two.Plate tectonics satisfactorily describes the continental drift from Gondwana to Eurasia but does not define the geodynamic mechanism of continuously rifting to collisions of continents in the Tethy an Realm.After reappraisal of geological records of the rift,collision and subduction initiation from the surface and various geophysical observations from depth,we propose that Eurasia-directed subducting oceanic slabs would have driven Tethyan system in the Phanerozoic.The Eurasia-directed subduction would have dragged the passive Gondwana margin to rift and drift northwards,giving birth to new oceans since the Paleozoic.The closure of preexisting oceans between the Gondwana-derived continents and Eurasia led to continental collisions,which would have induced the initiation of oceanic subduction in the Tethyan Realm.Multiple episodic switches between collision-subduction-rift repeatedly led to the separation of continental fragments from Gondwana and dragged them to drift towards Eurasia.The final disappearance of Neo-Tethy s would have induced collision of the Gondwana-derived continents with the Eurasian continent,giving rise to the Cenozoic Alpine-Zagros-Himalayan collisional system.Therefore,the Eurasia-directed oceanic subduction would have acted as a 'one-way train' that successively transferred the ruptured Gondwana continental fragments in the south,into the terminal in the north.In this regard,the engine of this "Tethyan one-way train" is the negative buoyancy of subducting oceanic slabs.  相似文献   
23.
We review some issues relevant to volatile element chemistry during accretion of the Earth with an emphasis on historical development of ideas during the past century and on issues we think are important. These ideas and issues include the following: (1) whether or not the Earth accreted hot and the geochemical evidence for high temperatures during its formation, (2) some chemical consequences of the Earth’s formation before dissipation of solar nebular gas, (3) the building blocks of the Earth, (4) the composition of the Earth and its lithophile volatility trend, (5) chemistry of silicate vapor and steam atmospheres during Earth’s formation, (6) vapor - melt partitioning and possible loss of volatile elements, (7) insights from hot rocky extrasolar planets. We include tabulated chemical kinetic data for high-temperature elementary reactions in silicate vapor and steam atmospheres. We finish with a summary of the known and unknown issues along with suggestions for future work.  相似文献   
24.
In this study, we performed an integrated investigation of K and Mg isotopes in hydrothermally altered rocks from the giant Dexing porphyry Cu deposit in China. Both the altered porphyry intrusion and the surrounding wall rocks exhibit large variations in K and Mg isotope compositions, with δ41K values ranging between-1.02‰ and 0.38‰, and δ26Mg values ranging between-0.49‰ and 0.32‰. The δ41K and δ26Mg values of the majority of altered samples are higher than the isotopic baseline values for upper continental crust. We attribute the general increase in δ41 K and δ26Mg in altered rocks to hydrothermal alteration,which caused preferential incorporation of heavy K and Mg isotopes in alteration products, particularly phyllosilicates. However,a few altered samples show anomalously low δ41K and δ26Mg values. The δ41K and δ26Mg values do not correlate with K and Mg concentrations, or mineralogy of altered samples. The variable K-Mg isotope data likely reflect fluids of different physicalchemical properties, or different isotopic compositions. Based on the combined K-Mg isotope data, at least three groups of hydrothermal fluids are distinguished from the Dexing porphyry deposit. Therefore, K-Mg isotopes are potentially a novel tracer for fingerprinting fluids in complex hydrothermal systems.  相似文献   
25.
The Early Jurassic period was characterized by extreme environmental changes, as reflected by major global carbon isotope anomalies and abrupt changes in oxygen isotope and elemental records of marine organisms. Available data suggest an overall warm Early Jurassic climate interrupted by periods of severe cooling, with a climatic optimum during the early Toarcian. Available geochemical studies, however, have mainly focused on the northern margin of the Tethys Ocean, so that the palaeogeographic extent of these environmental perturbations, latitudinal palaeotemperature gradients and climate belt boundaries remain poorly constrained. Here we report the first stable isotope records of brachiopod shells (δ13C and δ18O values) from the Upper Sinemurian-Middle Toarcian interval in the southern margin of the Tethys Ocean (northwest Algeria). These data were used to better constrain the palaeoenvironmental evolution of the North Gondwana margin during the Early Jurassic, which likely played an important role on supra-regional climate. The diagenetic history of the analysed brachiopod shells was monitored using scanning electron microscopy, and elemental (manganese and strontium) compositions. The brachiopod δ13C and δ18O data show very similar trends as those reported for various Tethyan regions, and record negative carbon and oxygen isotope excursions near the SinemurianPliensbachian and PliensbachianToarcian transitions and during the Toarcian oceanic anoxic event (T-OAE). Despite these similarities, the carbon and oxygen isotope records are systematically offset towards more positive δ13C values (average +0.5‰) and more negative δ18O values (−1.0‰) compared to those obtained from sites of higher palaeolatitudes in the northern Tethyan margin. These offsets suggest a spatial heterogeneity in the stable isotope composition of dissolved inorganic carbon in the Early Jurassic Ocean and a marked latitudinal temperature gradient between the southern and northern margins of the Tethys.  相似文献   
26.
Late Neoproterozoic-Early Cambrian calc-alkaline granitoids are ubiquitous in the continental basement of Iran and indicate formation within a Cadomian arc system at the northern margin of Gondwana. A basement complex comprising mainly mica schist, paragneisses, and metagranite along with metabasite and rare pegmatite is exposed in the Zayanderud region north of Shahrekord located in the hinterland of the Zagros mountain range. This complex is unique in the Neotethyan realm because it includes eclogites with Jurassic metamorphic ages implying involvement of continental crust at the onset of subduction. Ion microprobe UPb zircon dating along with trace element and oxygen isotope analyses for metagranites define two zircon age clusters of ca. 552 and 565 Ma confirming connection with the other Ediacaran age basement arc plutons in the belt. Zircon geochronology for pegmatite, by contrast, yielded a concordant age population averaging 176.5 ± 3.3 (2σ) Ma. Zircon crystals from the pegmatite also have unusually low rare earth element (REE) abundances with sharp increases towards the heavy REE. Along with an absence of a negative Eu anomaly, this indicates a high-grade metamorphic origin of zircon crystallizing from a pegmatite which was formed by melting of mica schist and possibly amphibole eclogite during decompression where incipient garnet breakdown released Zr and HREE to form zircon, and LREE were retained in stable apatite and titanite. Corresponding 40Ar/39Ar phengite dates from the pegmatite and the mica schist country-rock are overlapping with or only slightly postdate the UPb zircon ages, indicating rapid cooling after reaching maximum metamorphic pressure in the Early Jurassic. The Zayanderud basement complex is thus potentially a rare example of deep burial of continental crust and rapid exhumation due to buoyant escape during the incipient stages of subduction, well before the ultimate closing of the Neotethys ocean basin between Arabia and Eurasia in the mid-Tertiary.  相似文献   
27.
甘肃舟曲江顶崖滑坡成因分析与综合治理措施   总被引:1,自引:0,他引:1       下载免费PDF全文
大型土石混合体滑坡是一类受工程地质条件、降水或地震等多种因素影响的滑坡类型,研究其滑坡成因及治理方法对防灾减灾、保障人民生命财产安全具有重要意义。本文以舟曲县江顶崖滑坡为例,通过历史资料调研和现场地质勘察、数值模拟等手段,对该滑坡的成因和稳定性进行详细分析,并提出相应的综合治理措施。结果表明:该滑坡的地形地貌、松散的岩土体是引发滑坡的内在因素,而连续降雨以及江水对滑坡前缘冲刷是滑坡失稳的外在因素。在对滑坡成因分析的基础上,通过改进抗滑桩护壁结构、率先应用装配式框架支护,结合坡面裂缝整治工程等综合治理措施有效地控制住了该滑坡的变形。该滑坡的综合治理措施可为类似的高大边坡工程以及大型土石混合体滑坡治理提供参考。  相似文献   
28.
ABSTRACT

The Makran complex in southeast Iran provides a spectacular subduction-related accretionary complex to understand the mechanism of oceanic accretion and the evolution of subduction zones. In this paper, we present new major and trace element data as well as isotopic compositions of mafic volcanic blocks from the Makran ophiolitic mélange complex (OMC). Our aim is to assess the genesis of these rocks and discuss their implications on the evolution of Neotethys Ocean. These volcanic blocks are composed mainly of basalts with minor trachytes. The Makran lavas are occasionally interlayered with tuff layers. Zircons from these tuffs give U-Pb ages of 95 Ma, which is well in accordance with the reposted microfossil data for the interlayered pelagic limestones with pillow lavas. Makran basalts can be geochemically subdivided into four groups; normal to transitional MORB, enriched-MORB, Plume-type MORB and alkaline (-OIB-like) basalts. The OIB-like pillow lavas are represented by high values of Th/Tb (6.3–7.4) which are higher than other basalts (group 1 = 0.3–0.8; groups 2 = 0.7–1.6; group 3 = 1.58–1.36).143Nd/144Nd(t) ratios for basalts ranges from 0.51247 to 0.51292, whereas 87Sr/86Sr(t) isotopic composition of the OMC lavas varies from 0.704433 to 0.709466. The Pb isotopic composition of the lavas are quite high, ranging from 15.49–15.66 for 207Pb/204Pb(t), 18.09–19.12 for 206Pb/204Pb(t) and 37.80–39.23 for 208Pb/204Pb(t). The chemistry of these rocks suggests that they were formed most likely in an oceanic setting with clear plume-ridge interaction. These rocks can form from partial melting of a highly heterogeneous mantle source, which is extensively metasomatized with deep mantle OIB-type components. We suggest these rocks have been generated in an oceanic ridge with plume-ridge interaction, similar to the Iceland-Reykjanes Ridge, before being fragmented and accreted into the Makran accretionary complex.  相似文献   
29.
There is a growing practical interest in the ability to increase the sea states at which marine operations can be safely undertaken by exploiting the quiescent periods that are well known to exist under a wide range of sea conditions. While the actual prediction of quiescent periods at sea for the control of operations is a deterministic process, the long term planning of future maritime tasks that rely on these quiescent periods is a statistical process involving the anticipated quiescence properties of the forecasted sea conditions in the geographical region of interest. It is in principle possible to obtain such data in tabular form either large scale simulation or from field data. However, such simulations are computationally intensive and libraries of appropriate field data are not common. Thus, it is clearly attractive to develop techniques that exploit standard wave spectral models for describing the quiescence statistics directly from such spectra. The present study focuses upon such techniques and is a first step towards the production of a computationally low-cost quiescence prediction tool and compares its efficacy against simulations. Two significant properties emerge for a large class of wave spectral models that encompasses the ubiquitous Neumann and Pierson Moskowitz or Bretschneider forms. Firstly, the auto-correlation function of the wave profile that are required to produce the quiescence property can be obtained analytically in terms of standard special functions. This considerably reduces the computational cost making desktop computer-based planning tools a reality. Secondly, for each class of these parametric spectra, the probability of a given number of consecutive wave heights (normalised to the significant wave heights) less than some critical value is in fact independent of absolute wave height. Thus, for a broad class of practically interesting wave spectra all that is required to obtain the statistical distribution of the quiescent periods is simple rescaling.  相似文献   
30.
ABSTRACT

This paper presents geochronological, geochemical, and zircon Hf–O isotope data for late Mesozoic intrusive rocks from the northeastern North China Craton (NCC), with the aim of constraining the late Mesozoic tectonic nature of the NE Asian continental margin. U–Pb zircon data indicate that the Late Mesozoic magmatism in the northeastern NCC can be subdivided into two stages: Late Jurassic (161 ? 156 Ma) and Early Cretaceous (125 ? 120 Ma). Late Jurassic magmatism consists mainly of monzogranites. These monzogranites display high Sr/Y ratios and the tetrad effect in their REE, respectively, and have negative εHf(t) values (?22.6 to ?15.8). The former indicates that the primary magma was generated by partial melting of thickened NCC lower crust, the latter suggests that the monzogranites were crystallized from highly fractionated magma, with the primary magma derived from partial melting of lower continental crust. Combined with the spatial distribution and rock associations of the Late Jurassic granitoids, we conclude that the Late Jurassic magmatism in the eastern NCC formed in a compressional environment related to oblique subduction of the Paleo-Pacific Plate beneath the Eurasia. The Early Cretaceous magmatism consists mainly of granitoids and quartz diorites. The quartz diorites formed by mixing of melts derived from the mantle and lower crust. The coeval granitoids are classified as high-K calc-alkaline and metaluminous to weakly peraluminous series. Some of the granitoids are similar to A-type granites. The granitoid εHf(t) values and TDM2 range from ?14.3 to ?1.4 and 2089 to 1274 Ma, respectively. These values indicate that their primary magma was derived from partial melting of lower crustal material of the NCC, but with a contribution of mantle-derived material. We therefore conclude that Early Cretaceous magmatism in the northeastern NCC occurred in an extensional environment related to westward subduction of the Paleo-Pacific Plate beneath Eurasia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号